A fast maximum likelihood nonlinear feature transformation method for GMM-HMM speaker adaptation

نویسندگان

  • Kaisheng Yao
  • Dong Yu
  • Li Deng
  • Yifan Gong
چکیده

We describe a novel maximum likelihood nonlinear feature bias compensation method for Gaussian mixture model–hidden Markov model (GMM–HMM) adaptation. Our approach exploits a single-hiddenlayer neural network (SHLNN) that, similar to the extreme learning machine (ELM), uses randomly generated lower-layer weights and linear output units. Different from the conventional ELM, however, our approach optimizes the SHLNN parameters by maximizing the likelihood of observing the features given the speaker-independent GMM–HMM. We derive a novel and efficient learning algorithm for optimizing this criterion. We show, on a large vocabulary speech recognition task, that the proposed approach can cut the word error rate (WER) by 13% over the feature maximum likelihood linear regression (fMLLR) method with bias compensation, and can cut the WER by more than 5% over the fMLLR method with both bias and rotation transformations if applied on top of the fMLLR. Overall, it can reduce the WER by more than 27% over the speaker-independent system with 0.2 real-time

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker adaptation of context dependent deep neural networks based on MAP-adaptation and GMM-derived feature processing

In this paper we propose a novel speaker adaptation method for a context-dependent deep neural network HMM (CD-DNNHMM) acoustic model. The approach is based on using GMMderived features as the input to the DNN. The described technique of processing features for DNNs makes it possible to use GMM-HMM adaptation algorithms in the neural network framework. Adaptation to a new speaker can be simply ...

متن کامل

GMM-derived features for effective unsupervised adaptation of deep neural network acoustic models

In this paper we investigate GMM-derived features recently introduced for adaptation of context-dependent deep neural network HMM (CD-DNN-HMM) acoustic models. We improve the previously proposed adaptation algorithm by applying the concept of speaker adaptive training (SAT) to DNNs built on GMM-derived features and by using fMLLR-adapted features for training an auxiliary GMM model. Traditional...

متن کامل

Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models

A method of speaker adaptation for continuous density hidden Markov models (HMMs) is presented. An initial speaker-independent system is adapted to improve the modelling of a new speaker by updating the HMM parameters. Statistics are gathered from the available adaptation data and used to calculate a linear regressionbased transformation for the mean vectors. The transformation matrices are cal...

متن کامل

On the Use of Gaussian Mixture Model Framework to Improve Speaker Adaptation of Deep Neural Network Acoustic Models

In this paper we investigate the Gaussian Mixture Model (GMM) framework for adaptation of context-dependent deep neural network HMM (CD-DNN-HMM) acoustic models. In the previous work an initial attempt was introduced for efficient transfer of adaptation algorithms from the GMM framework to DNN models. In this work we present an extension, further detailed exploration and analysis of the method ...

متن کامل

Speaker adaptation using regularization and network adaptation for hybrid MMI-NN/HMM speech recognition

This paper describes, how to perform speaker adaptation for a hybrid large vocabulary speech recognition system. The hybrid system is based on a Maximum Mutual Information Neural Network (MMINN), which is used as a Vector Quantizer (VQ) for a discrete HMM speech recognizer. The combination of MMINNs and HMMs has shown good performance on several large vocabulary speech recognition tasks like RM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2014